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ABSTRACT

Silicon solar cells operating with induced junctions rather than

diffused junctions have been fabricated and tested. Induced junctions were

created by forming an inversion layer near the surface of the silicon by

supplying a sheet of positive charge above the surface. This charged

layer was supplied through three mechanisms:

1. applying a positive potential to a transparent electrode

separated from the silicon surface by a dielectric,

2. contaminating the oxide layer with positive ions, and

3. forming donor surface states that leave a positive charge

on the surface.

A movable semi-infinite shadow delineated the extent of sensitivity of the

cell due to the inversion region. Measurements of the response of the

inversion layer cell to light of different wavelengths indicated it to be

more sensitive to the shorter wavelengths of the sun's spectrum than

conventional cells. The greater sensitivity occurs because of the shallow

junction and the strong electric field at the surface. Theory of the con-

ductance of the inversion layer vs. strength of the inversion layer was

compared with experiment and found to match. Theoretical determinations

of junction depth and inversion layer strength was made as a function of

the surface potential for the transparent electrode cell.
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SUMMARY

This report relates experimental and theoretical work done to

demonstrate that an induced junction, formed by creating an inversion layer

at the surface of a semiconductor, can be used to separate hole-electron

pairs created by photons and thus can be used as a device to convert solar

radiation to electrical energy.

The increase in output when the inversion region was induced by

a transparent electrode separated by an insulator is described. An opaque

knife edge drawn across the face of the cell delineated sensitive portions

of the cell and showed the area of sensitivity to increase as the inversion

laver grew.

Cells were fabricated by contaminating the oxide layer on the cell

w.ith positive ions and thereby inducing an inversion layer in the semiconduc-

tor. Results similar to the transparent electrode cell were obtained. A

decrease in cell response was found as the oxide was incrementally etched

away.

Attempts to fabricate a cell using surface states as the source of

positive charge were made and the results reported.

A match of theory vs. experimental results was made between the

conductance of the inversion layer and the magnitude of the inversion layer.

A study of the inversion region as a p-n junction and its action as a

photovoltaic cell was also made.

The V-I characteristic of the inversion layer cells shows a small

curve factor and therefore a low efficiency. This is due to a high contact

resistance. Attempts were made to make low resistant Ti-Ag contacts, but
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these contacts peeled from the silicon surface during the photoetch process.

Stable low resistance contacts were made on conventional p-n cells, however,

indicating that the deposition and sintering stages were not at fault.

Rough spectral response measurements were made and the inversion

layer cell was found to be more sensitive to the shorter wavelengths in the

sun's sprectrum than a conventional cell due to the shallower junction and

the strong electric field that exists at the surface. A series of narrow

band optical filters was used to obtain a comparison between the inversion

layer cell and the conventional cell with respect to sensitivity to. the

short wavelength part of the sun's spectrum.



I. INTRODUCTION

A metallurgical p-n junction with a built-in electric field across

the depletion region can act as a collecting medium for hole-electron pairs

created by photons. The unlike charges gather on either side of the junction

and cause a potential difference across the diode. A current can be extracted

from the device at a reasonable potential difference and therefore the device

is capable of delivering power to an outside load. Maximum power can be drawn

from the diode or photovoltaic cell by adjusting the load for maximum power

transfer. Very low internal impedance is needed to minimize the internal power

consumption and raise the efficiency of the cell. Figure 1 shows a typical

V-I curve for a photovoltaic cell.

If the cell is used to convert the sun's radiation to electrical

power, the efficiency will depend on the band gap of the semiconductor with

respect to the photon energy spectrum of the sun. The efficiency will also

depend on the collection efficiency of the p-n junction, that is, the proba-

bility of a hole-electron separation by the field at the depletion region

before recombination takes place. The collection efficiency, then, will

depend on the distance of the junction from the places of hole-electron

creation, as well as the diffusion length of the charge carriers in the semi-

conductor. A conventional p-n solar cell configuration is found in Fig. 2.

The cross section of the device is shown in the drawing with the electric

field as shown.

To obtain maximum power from the cell, certain factors arise

that require trade-offs to occur. For instance, to obtain a low internal

resistance for the n layer, and therefore little internal power loss in this

layer, a rather thick layer would be desirable. However, a thick layer

1
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means the junction is located deep below the top surface and hole-electron

pairs created at the surface by the short wavelength rays from the sun will

have a greater chance of recombining before being collected. Thus, the

junction depth is adjusted as a compromise between the two needs.

Another similar adjustment occurs between the need for a heavily

doped n layer for low resistance and a lightly doped n layer for long

diffusion length. Again considering the plight of the pairs produced at

the surface by the short wavelength portion of the sun's spectrum.

Another type of p-n junction exists, however, besides the metal-

lurgical junction. This junction is an induced junction formed by attract-

ing electrons to the surface of a p type semiconductor and converting the

surface to n type. In the metallurgical junction the p and the n are created

by impurity dopants in the silicon, but in the induced junction the n is

created in the p semiconductor by capacitor action. A positively charged

layer is formed close to the surface but isolated from it. This positive

layer attracts electrons to the surface that fills the holes at the surface

until they are all filled and the electrons left over are free electron

carriers creating an n layer. A thin layer at the surface has thus been

inverted from p to n and is therefore called the inversion layer. This

induced p-n junction has a built-in field and a depletion region as has

the metallurgical junction. Therefore, this junction should be capable of

separating photon produced hole-electron pairs and, therefore, act as a

photovoltaic cell or solar cell.

The inversion layer cell has a distinct advantage over the conven-

tional cell, however. Whereas the electric field of the conventional cell

exists only at the junction, which might be comparatively deep beneath the
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surface so that no field exists at the surface, the field of the inversion

layer cell originates outside the surface so the field is maximum at the

surface. Thus, free charges created at the surface by ultraviolet photons

are found in a high field and their separation aided by the force of the field

on the carriers. Therefore, the inversion cell should produce more power

from the short wavelength part of the sun's spectrum because more pairs

created at the surface are collected before they recombine than in the

conventional cell. A cross section of the inversion layer cell is found in

Fig. 3. To collect the electrons, it is necessary that n diffusions be

connected to the inversion layer as shown.

The p type part of the cell below the junction is the same in both

types of cells and, if the two are fabricated from the same resistivity wafer

and the same thickness, the response to the long wavelength part of the sun's

spectrum will be the same.

There is enough additional power in the short wavelength part of

the radiation output of the sun to warrant an interest in investigating the

possibility of obtaining a more efficient solar cell with the use of the

induced junction. This report considers experiments performed to investi-

gate this possibility.

The amount of additional power that might be available at the

shorter wavelengths can be considered by observing the power spectrum from

the sun shown in Fig. 4a. Conventional solar cells convert very little of

the shorter wavelengths to useful power. Figure 4b shows the spectral

response of a conventional cell. The poor response at the shorter wave-

lengths is due to the fact that these wavelengths create hole-electron

pairs at the surface of the cell and must diffuse to the junction to be
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collected. Most of them are lost by recombination while travelling to the

junction and therefore contribute nothing to the output current.

The inversion layer solar cell differs in several ways from the

conventional cell with respect to the collection of hole-electron pairs

created at the surface by photons from the sun in the short wavelength part

of the spectrum. Most of the effective part of an inversion region is found

within .1 pm of the surface and therefore represents a very shallow junction

so carriers generated at the surface can be collected before recombination.

Because an inversion region is formed by charges outside the surface, a high

electric field exists at the surface and extends into the silicon. This field

tends to aid the carrier drift to the junction and therefore shorten the time

for collection. Thus, most of the holes and electrons created at the surface

should be collected. If we assume that all of them are collected in the

shorter wavelength region, we can add that part of the spectrum to the power

converted by the inversion region solar cell.

If this is so, the response vs. spectrum curve (for equal energy

input) might look like the dotted portion of Fig. 4b, where an increase in

response in the shorter wavelengths as compared with the response of the con-

ventional cell is evident. (These are not data points but an estimation of

the response.) The output of both types when exposed to the energy from the

sun is shown in Fig. 5. The dotted curve represents the inversion layer cell

and the solid curve the conventional cell. The increase in power output for

this estimated determination is roughly 10%. Thus, qualitatively, it can be

seen that a greater response of the cell in the shorter wavelengths will

yield a greater overall output power of the cell.

In order to induce an inversion layer in a semiconductor surface, a

sheet of positive charge must be formed near the surface but isolated from it.
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This can be accomplished in several ways. An obvious way is by creating a

capacitor on the surface with the semiconductor as the bottom electrode. The

insulator must be transparent and the top electrode must be somewhat conductive

and also transparent.

Silicon oxide (quartz) is transparent over the spectrum of the sun

and can be grown easily on the surface of a silicon wafer by thermal oxidation.

Other insulators and other methods can be used to form a dielectric on the sur-

face, but thermally grown SiO 2 will be used in the experiments described here.

Transparent conductors exist, but they have low conductivity. Since

the transparent electrode is not in the power circuit of the cell, it is not

necessary that this electrode have a very low resistance. A material such as

tin oxide will suffice.

A positive bias applied to the transparent electrode with respect to

the p semiconducting wafer of sufficient magnitude will cause an inversion layer

to grow at the surface. This is one way of obtaining an induced junction and

was used in fabricating cells.

Another method of obtaining positive charges above the surface is to

supply ions to the SiO 2 layer on the silicon surface, either as it is growing

or forcing it through the oxide surface after an oxide layer has been grown.

No transparent electrode is necessary because the ions will be the source of

positive charge.

Mixing a vapor strongly contaminated with a sodium compound with the

oxidizing vapors such as oxygen and water vapor used to grow SiO 2 on silicon

will produce an oxide rich in Na atoms and some will be ionized. Other sub-

stances can be used but Na was employed in the experiments reported here.

This is another way of producing an induced junction and is part of this report.

Yet another way of obtaining a charged layer is to treat the silicon

surface such that a large density of donor surface states are created. The
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surface represents a drastic change to the ordered crystal structure inside the

bulk material and states with energies within the forbidden gap are possible if

the interaction with the outside atoms and the silicon surface presents the

proper properties. If these states yield an electron to the silicon bulk at

the surface, a positive charge is left at the surface, the electron is trapped

at the surface, and an inversion layer is formed.

Experiments on cells fabricated to bring out this means of creating

an inversion region are part of this report.

A theoretical analysis of the induced junction as a solar cell will be

reported. Fundamental equations normally applied to p-n junctions will be used.

The boundary conditions and detailed equations peculiar to the induced junction

will be applied to the fundamental equations to yield results compatible with

the experimental findings. Since the primary use of the solar cell is to extract

power from the radiation of the sun, the internal power losses must be kept to a

minimum. An important loss of internal power occurs across the internal resist-

ance of the cell. The resistance of the contact between the silicon surface and

the metal contacts is an important part of the internal resistance and must be

kept as. low as possible. Sintered aluminum contacts do not meet the necessary

conditions for these contacts, but Ti-Ag contacts or Ti-Pd-Ag contacts do. An

attempt to fabricate inversion layer cells with Ti-Ag contacts was made. The

problems associated with fabricating the Ti-Ag contact for the inversion layer

cell will be presented and discussed.

Experimental results of exposing these cells to various parts of the

spectrum of the sun are presented and conclusions drawn that support the claim

that the inversion layer cell is more sensitive in the sun's shorter wavelengths

than the conventional cell.
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II. TRANSPARENT ELECTRODE CELL

A drawing of the transparent electrode cell is found in Fig. 6.

The positive layer is formed by applying a bias between a transparent con-

ducting film and the silicon wafer. The conducting film and the surface of

the silicon are separated by a layer of oxide thermally grown on the silicon

surface.

In order to fabricate a transparent electrode cell, a method of

depositing a transparent conductor had to be developed.

A. Transparent Electrode

Not many transparent substances that afford electrical conduction

exist. Tin oxide is one such such substance. It can be deposited as a thin

film by passing fuming stannic chloride across a hot substrate in the presence

of oxygen. Nitrogen is allowed to flow through a beaker containing the stan-

nic chloride and oxygen is allowed to pass through a water bubbler before

both are mixed and channelled to flow down the reaction tube. The center of

the furnace tube is maintained at a temperature of 530 0C. The wafer to be

coated is inserted into the tube on a quartz carrier and positioned in the

center where the reaction takes place. A diagram of the apparatus is shown

in Fig. 7.

Since there is interest in the shorter wavelength sensitivity of

the inversion layer solar cell, there should be interest in the transmission

of the tin oxide in this region as well as the longer wavelengths. C. W. Mor-

rison in his article in Applied Optics (Vol. 6, No. 3, Mar. 67, p. 573)

presents a curve of transmission vs. wavelength for a deposited film of

SnO2 . This curve is reproduced in Fig. 8. It is obvious that although there

is some attenuation, the response of the cell will not be greatly affected

in the short wavelength region.



8

To ascertain experimentally what the attenuation might be,

several slides were coated with a film of SnO2 and the film etched from

half of each slide. Tungsten light was used to illuminate a conventional

solar cell through the side of the glass slide with the tin oxide coating

and then the side free of the oxide. Short circuit current ratios of

.8 - .9 were obtained. Thus, the light attenuation of the thin layer of

tin oxide is not serious.

Two solutions are used to etch the transparent conductor. One is

an active HC1 etch and the other is an HF solution. The HC1 ip made active

by adding zinc to the 1:1 H20 - HC1 solution. The etching takes place while

the zinc is reacting with the HC1. This etch is selective so only the SnO 2

is removed leaving the Si or SiO 2 untouched beneath it.

The HF etch is a 6:1 solution. This will also etch SiO 2 and is,

therefore, useful when both layers need to be etched together. Both of

these etches are compatible with photoresist masking.

B. Transparent Electrode Cell

Transparent electrode inversion layer solar cells were fabricated

using the standard processing techniques of the Solid State Engineering

Laboratory at The University of Arizona. An outline of this process is

found in Appendix I.

Several cells were fabricated with a contact pattern similar to

the one used for the conventional cell. Some of these large cells suffered

from pin holes that cause shorts and leakage from the transparent electrode

to other parts of the cell. Any hole in the oxide can expose the transpar-

ent electrode to other parts of the cell. Any hole in the oxide can expose

the transparent electrode to the silicon surface. Since the density of
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pin holes is not large, smaller cell sizes would increase the chance of

obtaining a "good" cell. Information gained from a smaller cell would be

just as valuable as a large 2x2 cm cell, so masks were made to reduce the

size of each cell from 2x2 cm to .5 x .5 cm. This allows a matrix of 4x4

cells to be fabricated simultaneously on a 2x2 cm wafer. Thus, from the

sixteen areas some will be pin hole free and therefore subject to close

examination.

Since the area of each cell is small, there is no need for a

multiple finger contact pattern. One contact area in the center would suf-

fice. A more useful structure can be made, however, by providing two con-

tact stripes so measurements can be made between them. This arrangement is

particularly useful in the contaminated oxide and the surface state cells.

The mechanism that creates the inversion regions is effective only in the

area between the two stripes. Therefore, a conductance measurement between

the two stripes will give an indication of the magnitude of the inversion

layer between them. Metallic contact to the top of the silicon is made by

an evaporated layer of metal (Al) etched into a grid pattern. The space

openings are .4 cm x .4 cm. Within each opening are two stripes of metal

separated by .25 cm. An n type diffusion exists under each metallic

stripe, in the p type wafer creating two p-n junctions, .35 cm long, .075 cm

wide and separated by .25 cm. A .25 cm and .35 cm layer of silicon dioxide

topped by a transparent conducting layer of tin oxide is formed on top of

the silicon between the two stripes and slightly overlapping each stripe.

This configuration is seen in Fig. 9. A cross section of the device is

shown in Fig. 10.
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When a positive bias is placed between the transparent electrode

and the wafer, negative charges are attracted to the top of the silicon

between the two n diffusions. Thus, the p type wafer at the surface is

converted to n type. The two n diffused stripes are thus connected together

by this n layer affording conduction between them. The conductance will

depend on the magnitude of the positive bias to the electrode. If a charge

already exists on the silicon surface due to filled surface states or con-

tamination, conduction will take place at zero bias. This zero bias conduct-

ance can be reduced by applying a negative bias to the transparent electrode,

causing the negative charges to leave the surface and convert it back to p

type. Once the semiconductor between the two n diffusions is p type, at

least one reverse biased junction appears in the current path between the n

diffused areas. This limits the current to the reversed bias saturation

current I
O0

Thus, a plot of I vs. bias to the transparent electrode will range

from Io to comparatively large values of current. If I is forced through

the circuit with a small constant potential (in this case, .iv), then I will

be directly proportional to the conductance of the device.

Such a plot for one of the small cells is found in Fig. 11. Mea-

surements were made in the dark to eliminate any photo voltage that might

occur and upset the results. From examination of the plot it can be seen

that there is an inversion layer at zero bias occurring near .01 ma. This

can be attributed to either a trapped surface charge or an ionic charge in

the oxide or some of both. Saturation in this plot occurs at near -20V and

levels off at 1 pa. Since the area of the reversed biased n diffusion is

2 the saturation current is 3.3 x 10-6 A/cm2. From -20V bias the.3 cm , the saturation current is 3.3 x 10 A/cm . From -20V bias the



curve rises at first in a linear fashion and then bends over as higher bias

potentials are applied. Since the current is a direct function of the elec-

tron concentration n, and n is a direct function of the applied potential,

we would expect the current to be a linear function of the applied bias.

The mobility changes, however, causing the nonlinearity.

The thickness of the silicon oxide between the silicon surface

and the tin oxide is 6000 A in this sample. The electrical breakdown

potential of 6000 A on Si02 is 360V. Cells similar to the one reported

above broke down at 200 volts so measurements were limited to a maximum

applied bias of 150V.

The plot in Fig. 11 illustrates the growth of an inversion region

and will give us some indication of the concentration of carriers at the

surface.

Now the conductance G is equal to

wt
G = o --

but

a = qnp

so

Gk
n=

q wt p

G at 50V bias = .32 mili mhos

Z = .25 cm, w = .35 cm

3 2
p = .7 x 10 cm /Vsec
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and assuming an inversion layer thickness of .1p, we obtain

n = 1.9 x 10 carriers/cm 3

This same parameter can be estimated by considering the capacitive action

between electrode and silicon. The capacity between the two can be found by

CA
C -

S

A is area of electrode

S is thickness of Si02

but

EAV
Q = cv = S

so

EV

A S

but

qnt =

so

EV
n- qtS

where

-13
E = 3.5 x 10 farad/cm

V = 50 volts

-4
t = . x 10 cm

S = 6000 A

thlius, n = 1.8 x 1017/cm 3 in good agreement with the value of n above.
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These are simplified determinations of n because other factors

such as the nonlinearity of G vs. bias and the surface charge on the silicon

were left out; nevertheless, it does show compatibility between the two

methods and gives some confidence that the strength of the inversion layer

can be determined by a conductance measurement.

This will be important when we try to determine the strength of

the inversion layer when no transparent electrode exists such as in the

contaminated oxide cell or the surface state cell.

From the data of conductance vs. bias between the two stripes, a

determination of the strength of the inversion layer for the contaminated

oxide layer can be obtained. This is accomplished by making a conductance

measurement between the two n diffusions and relating this to the bias

required to obtain the same conductance.

A schematic of the arrangement of equipment used to make these

measurements is found in Fig. 12. The p wafer was connected to the n dif-

fusion on the negative side of the .1 volts so the other pn junction would

be reverse biased.

A curve of short circuit current vs. bias on the transparent

electrode was made on the cell from series 6 No. 1 wafer mentioned above.

The plot for this cell is found in Fig. 13.

Another significant fact to be gained from Fig. 13 is the increase

2.8
in cell response as a bias is applied. A ratio of - = 2.3 is obtained

1.2

from +150 volts to -50 volts. The curve bends over into a saturation condi-

tion as we would expect. The conductance curves do not saturate, however,

as shown in Fig. 11. This can be explained because as shown by the
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equations derived above for n and G that G is a linear function of n and

n is a function of the applied bias V.

Knife Edge Experiment

Another cell on wafer #1, series 6, was chosen to be used to mea-

sure a number of interesting things about the inversion cell. A plot of

conductance between the n diffusion regions vs. transparent electrode bias

for this cell is found in Fig. 14 for a FBE light intensity of 140 mw/cm 2

The plot is similar to the ones on the same wafer.

A new set of data was taken on this cell that was not taken on

the others that gives further insight into the effectiveness of the inver-

sion layer as a photon produced charge collector.

Provision was made for a semi-infinite plane with a knife edge

to be inserted between the light source and the solar cell surface. The

plane was very close to the cell surface so the radiation could be blocked

off from a portion of the cell leaving the rest of the cell illuminated.

The plane was mounted on a carrier that could be precisely positioned with

a micrometer head. Thus, the edge of the plane could be accurately positioned

at any point over the cellwith respect to an edge of the cell area. The

response of the cell as portions of light are prevented from illuminating

the cell will indicate how far from the diffusion areas the cell is sensitive

to the collection of hole electron pairs generated by photons.

Figure 15 shows the results of cell response (Isc) vs. distance of

the knife edge from the edge of the cell area for various values of transpar-

ent electrode bias. The edge of the cell area is the edge of the metal grid

structure used to contain the p wafer that separates each cell area. The

data to plot Fig. 15 was taken by drawing current from only one of the n
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diffusion areas, the one farthest from the cell edge at 0 inches. The dark

bars at the bottom show the n diffusion areas and the dotted lines are

the cell edge areas. An outstanding feature of this family of curves is

the extension of the sensitive area as the inversion region grows with bias.

If the 90% points of each curve is taken, shown by the arrows, it can be

seen that as the inversion region becomes stronger, the sensitive area

becomes larger and thus will accept more of the charges created by photons.

Therefore, the response of the cell becomes greater and the power output

more. At -10V bias the 90% point is .02 inches from the near edge of the

diffusion region used to extract power, whereas at +80V bias the 90% point

is .03 inches from the edge of the diffusion region. At -20V bias the

charges diffuse to the depletion area of the diffused p-n junction and are

collected there but when an inversion region exists in this region, the

charges can be separated by the induced p-n junction at the surface increas-

ing the probability of a collection before recombination. At distances

greater than .03 inches from the diffusion area or distances less than .078

inches from the edge of the cell area no increase of response is observed

as light impinges on this area because the hole-elect-ron pairs created there

recombine before reaching the n diffusion area even though collected by the.

inversion layer. The linear response from the near edge of the diffusion

region as the light is eliminated over the diffused area is due to the fuzzy

edge of light on the cell due to the diffuse nature of the FBE light source

and the distance the knife edge had to be above the cell in order to clear

probes to the conducting areas.

Nevertheless this region is not affected by the bias and, there-

fore, not affected by the inversion layer. The diffusion length is about

.015 inches for minority carriers in the p wafer.
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An interesting parallel to the analysis of Fig. 15 is found in

Fig. 16. Here the same type of curves were made but both n diffusion regions

were connected together. For a -20V bias the photons at the middle of the cell

generate charges that do not reach either depletion region and thus a flat

portion occurs.

Figure 17 shows a similar plot of knife edge vs. Isc response for

a mercury vapor light source. This light source is a point source and there-

fore much less diffuse than the FBE lamp and the shadow edge is much sharper.

Therefore, we do not see the characteristic slope at the end of the curve as

for the FBE lamp. This curve acts as would be expected; that is, the curve

flattens out as it passes over the aluminum on the active diffusion area and

sharply dips at the end as the sharp shadow passed over the exposed area

between the n diffusion and the edge of the cell or aluminum matrix. A

marked difference in the extent of influence of the light when the inversion

layer is present than when it is not, is brought out by comparing the 80V

and -20V curves in this figure. The ultraviolet rich source will create

holes and electrons near the surface where they can be separated by the strong

field there before recombining.

Figure 18 shows this same cell in response to the UV source. Only

one contact was used. This source is a diffuse source so we have a fuzzy

shadow as in the FBE lamp and a slope exists at both ends for the OV to 80V

bias. The slope exists at the left end because the collection of carriers

for these wavelengths extends across the cell and the aluminum over the dif-

fusion area blocks out the light. The -20V bias curve collects carriers from

a greater distance than for white light but not as much as when the inversion

layer is present.



17

Thus, it has been demonstrated by this set of experiments that

the induced p-n junction and associated electric field does indeed separate

the hole-electron pairs created by photon irradiation.

Evidence also points to this cell being extra sensitive to the

ultraviolet spectrum. It was also pointed out that the separation of the

n diffused areas for optimum collection should be closer than the separation

of the n diffusion in the test cells.

I-V Curves

A curve of solar cell current vs. cell output voltage for the

transparent electrode cell is found in Fig. 19. Biases of -20, 0, 40 and

80 volts were used. The illumination of the FBE lamp was adjusted for 140

mw/cm 2 . The maximum power at a bias of 80V is about .51 milliwatts, at a

bias of 40 about .47 milliwatts, at OV about .4 mw, and at 0 bias about .3 mw.

2
Since the area of the small cell is about .1 cm , the efficiency of the cell

at 80V bias is

.51
1 1 x = .036 3.6%140 x .1

and the efficiency of the -20V bias is

3-- = 2.1%
14

The short circuit current - open circuit voltage at 80 volts bias product

yields an efficiency of

.48 x 2.3
= .079 = 7.9%14
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III. CONTAMINATED OXIDE CELL

A. Contaminated Oxide Growth

In the fabrication of inversion layer solar cells, standard solid

state laboratory processing techniques were used whenever possible. However,

due to the nature of the contaminants being used (sodium compounds), it was

necessary to prepare a special furnace to thermally grow silicon dioxide

impregnated with positively charged sodium ions. Oxygen and nitrogen gases

were metered and valved so combinations of flowrates of either or both gases

could be passed down the quartz tube heated by the furnace to 10500 C. An

alternate path for oxygen was provided through a bubbler. If pure water is

used in the bubbler, a steam oxide can be grown on a silicon wafer compara-

tively free of contaminated ions. If a substance rich in ions was dissolved

in the water, some of the substance would carry over with the water vapor

and contaminate the oxide, thus providing positive charge sources in the

oxide. The physical arrangement used to accomplish this oxide growth is

shown in Fig. 20.

B. Sodium Compound Contamination

Previous studies made on MOS transistors long ago established the

fact that sodium can act as a source for positive charge. Therefore, sodium

chloride was selected initially as the source of the contaminating ions.

Other sodium compounds such as NaOH, NaBr, and Nal were used in the bubbler

in an endeavor to optimize the contamination in relation to cell response

(ISC). Experimental data revealed that the best source of positive ions which

could be applied as described was NaC1.

The small cell configuration was used to fabricate a number of con-

taminated oxide solar cells. The oxide over the area between the n-diffusion
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stripes was grown with a vapor formed by bubbling oxygen through a NaCI

solution at 1000 C. Thus, the oxide was interspersed with Na atoms, some of

which were positively ionized. This positive charge in the oxide caused

electrons to accumulate at the oxide-silicon interface and produce an inver-

sion layer in the semiconductor.

The steps used in processing these solar cells are.outlined as

follows:

1. SiO 2 was grown on wafers for 50 minutes at 11000C producing a

0

6000 A layer of oxide.

2. The small cell grid pattern was then etched through the oxide

using conventional photoresist process.

3. A 15 minute predeposition of n-type dopant (phosphorus) was

accomplished using standard procedures.

4. The initial oxide growth was completely removed from the front

and back of the wafer.

5. " Using the special furnace, a contaminated oxide was grown on

the wafer.

6. This layer of oxide was etched with the photoresist process to

provide a grid pattern on the diffusion areas, but was smaller

than the diffusion areas.

7. Aluminum was vacuum deposited on front of wafer.

8. Aluminum was then etched into the proper grid pattern.

B. Cell Characteristic Measurements

For all series of wafers processed, 10 ohm-cm, 2x2 cm, p-type

wafers were used. Each series consisted for four wafers, each with sixteen

small solar cells. Each of the small cells underwent a series of measurements
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to determine the cell characteristics. Measurement of the integral and

spectral characteristics of the cells was accomplished to obtain the

following:

1. Cell response to tungsten illumination. The illumination was

adjusted using a JPL calibrated secondary standard silicon

solar cell. The current-voltage characteristics under illumina-

tion were measured and the short-circuit current, open-circuit

voltage, and maximum power points were obtained.

2. Cell response to sun-simulated illumination. Since the inver-

sion layer solar cell theoretically had a greater response in

ultraviolet light than conventional p-n junction solar cells,

investigation was conducted by illuminating with an ultraviolet

rich source with a spectrum beyond that obtainable with tungsten

sources. Measurements as in (1) above were made. The illumination

was again adjusted using the calibrated secondary standard silicon

solar cell.

D. Contaminated Oxide Thickness and I

Several wafers were processed with different thicknesses of

contaminated oxide, thinking that if the distribution of Na atoms is uniform

in the oxide, the total charge density would be a function of the oxide

thickness. Therefore, the inversion layer strength should increase with

oxide thickness and consequently, so should the response of the cell. Oxide

thicknesses were varied by subjecting each wafer to the same vapor flow but

for different lengths of time in the furnace. The short-circuit current was

then measured for each of the sixteen small cells on each wafer. These

values were then added and averaged for each separate wafer to obtain a
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wafer average value for ISC. The results of this experiment are shown by

the two curves in Fig. 21.

A definite increase in average ISC is noted in the thicker oxide

up to an oxide thickness of approximately 5000 1, at which point the ISC

values approach a maximum. The observed leveling is the result of two

factors. First, the thicker oxides produce higher inversion densities,

thereby causing a decrease in carrier mobilities and causing a nonlinear

relation of hole-electron collection with inversion layer strength.

Secondly, there exists the probability that, for the thicker

oxides, the positive ions induce negative charges at the outside surface of

the oxide rather than at the oxide-silicon interface. Thus, not all of the

ions in the oxide are effective and a linear growth of inversion layer

strength should not be expected for a linear growth of oxide even though

the concentration of ionic contaminants is uniformly distributed throughout

the oxide. In fact, if the oxide is thick enough, none of the ions at the

top surface will induce electrons at the silicon surface, but will trap a

negative charge on the outside surface of the oxide.

If the curves are extended to zero oxide thickness at the lower

ends, a value of about 1 ma ISC was noted. This is compatible with the ISC

of a bare p-n junction under an intensity of 140 mw/cm 2 . The optimum oxide

thickness was determined to be within the 3500-4000 A range. This is the

area of merger of two curves and is the oxide thickness selected for experi-

ments designed to optimize contamination solution concentration and selection

of the best sodium compound to provide positive ions.

An unusual aspect of this experiment is the fact that two curves

evolved from measuring the Isc on each of the 16 small cells and averaging

to obtain an average I for a number of wafers whose only difference is the
sc
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oxide thickness for the entire wafer and yet have the results from each wafer

plot on either of the two curves in Fig. 21 rather than on just one curve.

It is apparent that different conditions at the surface or in the oxide can

cause different inversion intensities. Why there is this difference has not

been determined, but variations can occur as a result of processing especially

when surface phenomena is an important factor.

To further show that the oxide, in fact, does hold an influence over

the output of the cell, a wafer with an oxide thickness of 3600 A was subjected

to a number of etches that removed the contaminated oxide in incremental steps.

The wafer chosen had an output of 2.1 ma Isc for an illumination of 140 mw/cm 2

from a tungsten lamp. The incremental steps yielded oxide thicknesses of 2900,

2100, 1600, 700, 200, and 0 Angstroms. The average output of the cells on the

wafer was measured at each step. The results of this etch and measurement pro-

cess are shown in Fig. 22. This process was then repeated with a wafer having

a 7100 A oxide layer and an I output of 2.34 ma after the initial processing.

The results of that process are shown in Fig. 23.

It can be seen from Figs. 21, 22, and 23 that ionic contamination can

create an inversion layer of sufficient strength to affect the power output of

the cell. Also, the strength of the inversion layer is a function of oxide

thickness due to the uniform distribution of positive ions in the oxide. The

existence of a uniform distribution was verified by the plots in Figs. 22 and 23.

E. Inversion Layer Sensitivity

In an attempt to determine the sensitivity of the inversion layer,

one of the small cells and the conventional p-n junction solar cell were

both exposed to a light source strong in ultraviolet. The small inversion

cell selected for this experiment displayed an I of 3.0 ma when subjectedsc
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to tungsten illumination of sunlight intensity. When exposed to an ultra-

violet source, an ISC of 63 pa was recorded. An indication of the relative

response of the two different cells was obtained by exposing the conventional

cell to the same tungsten and ultraviolet source as that used for the inver-

sion layer cell. The results are as follows:

Tungsten Source Ultraviolet Source

Conventional Cell (ISC) 133 ma .22 ma

Inversion Layer cell (ISC) 3.0 ma .063 ma

The ratio of the short circuit currents for the two cells for the

tungsten source is 133/3.0 or 44. That is, the conventional cell generates

44 times as much ISC as the inversion layer cell. However, from the U.V.

source the ratio is .22/.063 or 3.5. So the conventional cell does not

generate nearly as much in'proportion to the inversion layer cell. There-

fore, the power output for this part of the spectrum should be much greater

for the inversion cell. The area of one of the small inversion cells is

approximately 1/40 the area of the conventional 2x2 cm cell. If we use this

factor, a 2x2 inversion cell would produce 3.0 ma x 40 or 120 ma compared

to the 133 ma for the conventional cell if flooded with 140 mw/cm 2 of

incandescent light. But if exposed to U.V. light only, the 2x2 cm inversion

cell would produce .063 ma x 40 or 2.52 ma compared with .22 ma for the

conventional cell. This result is compatible with the claim that the

inversion cell should be more sensitive in the U.V. because the hole-electron

pairs are created at the surface in a strong electric field and this field

separates the carriers quickly before recombination can occur.
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A study was made of the U.V. response of the inversion cell as

a function of oxide thickness. The previously described incremental etching

procedure was used to measure U.V. ISC at various contaminated oxide thick-

nesses. These measurements revealed that U.V. response did not vary with

oxide thickness but that U.V. response was relatively constant as long as

any oxide at all existed on the solar cell. Therefore, even the weakest

intensity electric field created by the inversion layer was adequate to col-

lect the hole-electron pairs before they could recombine.

Another attempt to observe the affect of a change in spectrum was

tried by using still another different light source. A mercury vapor source

rich in ultraviolet, but containing a spectrum in the visible also, was used

on the two cells for comparison. The same analysis was made as before by

looking at the ratio of ISC for the conventional cell with respect to the

inversion cell.

Tungsten Source Hg Source

Conventional Cell (ISC) 133 ma 17 ma

Inversion Layer Cell (ISC) 3.0 ma .54 ma

The ratios are:

Conv. cell 133
v. cell (tungsten) = 3.- = 44Inv. cell 3.0

Conv. cell 17
Inv. cell .54

Again, the evidence reveals that an ultraviolet rich source will

decrease the ratio between the conventional cell ISC and the inversion cell

ISC, thereby establishing the inversion layer as more efficient in the

U.V. region.
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F. Knife Edge Measurements

In order to gain further insight into the effectiveness of the

inversion layer as a charge collector, provisions were made for a semi-

infinite plane with a knife edge to be inserted between the light source

and the solar cell surface at a point near the surface. The response of

the cell as portions of light are prevented from illuminating the cell will

indicate how far from the diffusion areas the cell is sensitive to the

collection of hole-electron pairs generated by photons. Figure 24 shows

the results of cell response (I SC) vs. distance of the knife edge from the

edge of the cell area for various contaminated oxide thicknesses. The edge

of the cell area is the edge of the metal grid structure used to separate

each cell area. The data to plot Fig. 24 was taken by drawing current from

only one of the n-diffusion areas, the one farthest from the cell edge at

0 inches. The dark bars at the bottom show the n-diffusion areas. Points

at which ISC is maximum and zero are the cell area edges.

An outstanding feature of the family Qf curves of Fig. 24 is the

extension of the sensitive area as the inversion region grows with oxide

thickness. If the 90% point of each curve is taken (shown by the arrows),

it can be seen that as the inversion region becomes stronger, the sensitive

area becomes larger and thus will accept more of the charges created by

photons. Therefore, the response of the cell becomes greater and the power

output more. At distances greater than .03 inches from the diffusion area

or distances less than .07 inches from the edge of the cell area, no increase

in response is observed as light impinges on this area. This occurs because

the hole-electron pairs created there recombine before reaching the n-

diffusion area even though they are collected by the inversion layer. This
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somewhat indicates the strength of the electric field created by the inver-

sion layer if one compares the normal diffusion length of minority carriers

in the p-type wafer (.015 inches) to the collection distance (.03 inches)

from the n-diffusion areas.

An interesting parallel to the above analysis was made by connecting

both n-diffusion regions into the test circuit. These curves are shown in

Fig. 25. For cells with oxide thicknesses of 0-2800 A, the photons at the

middle of the cell generate charges that do not reach either depletion region

and thus a flat portion occurs. For the cell with 700 A of oxide a flat por-

tion should occur but should be shorter than the 1250 A curve and shorter at

both ends. For the cell with 3600 A of oxide there is response (ISC) across

the entire length of the cell as one would expect because of the presence of

the inversion layer. At about .06 inches a lump can be noted. This is due to

the bending of the curve from the collection of carriers by the left n-diffusion

and the influence of the collection of carriers by the right n-diffusion. The

curve could approximate a straight line by placing the two diffusion areas

closer together. Placing them very close would cause the diffusion length to

overlap and straighten the 0-2800 X of oxide curves.

Thus, it was demonstrated by this set of experiments that the

induced p-n junction and associated electric field does indeed separate the

hole-electron pairs created by photon irradiation.

Evidence also points to this cell being extra sensitive to the

ultraviolet spectrum. It was also pointed out that the separation of the

n-diffused areas for optimum collection should be closer than the separa-

tion of the n-diffusions of the test cells.
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IV. SURFACE STATE SOLAR CELL

Different methods of treating the surface of a silicon wafer to

create occupied surface states during the fabrication of inversion layer

solar cells were tried. Small area solar cell masks described above were

used to fabricate cells with different processing procedures. Four 2 cm x

2 cm wafers with the small cell patterns were processed in four different

ways.

A. Fabrication

The first wafer was processed in the following way after the n

diffusion:

1. The final oxide was grown for 12 minutes using steam and oxygen.

2. The wafer was pulled slowly from the furnace with steam and

oxygen on.

3. Holes in the oxide were etched for aluminization.

4. The wafer was aluminized and etched.

5. The wafer was sintered for 4 minutes at 4800C.

The average short circuit current over the 12 cells on this wafer

was 2.08 ma for an illumination of 140 mw/cm2 from a FBE incandescent light

source. Variation of ISC response from cell to cell over the wafer ranged

from 1.9 ma to 2.1 ma. 2.08 can be compared to the transparent electrode

cell of the same configuration where a bias changed the cell from 1.2 ma to

2.8 ma (+160V). Thus, there is an inversion region created by mechanisms

at the surface or in the oxide or both.

The second wafer was processed as the first wafer except the

aluminum in Step 4 was sintered before it was etched. Thus, the aluminum

over the oxide over the sensitive portion of the cell is allowed to interact
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with the top surface and reduce the surface states at the Si-SiO2 interface.

This annealing effect is probably due to the interaction of the aluminum with

a slight trace of water at the top surface. This interaction produces

hydrogen and hydrogen diffuses rapidly through the oxide at the sintering

temperatures and partially pacifies the surface states at the interface.

Thus, the response of the cells on wafer #2 should be less than the response

on wafer #1. Such is the case because the average ISC for the cells on wafer

#2 is 1.58 ma with a variation across the wafer of 1.5-1.7 ma. This is a

significant change compared to wafer #1 and illustrates how a change in

processing can effect a change in the strength of the inversion layer.

Another wafer was processed differently than wafer #1 or #2.

Whereas in the first two wafers, both steam and oxygen were left on in steps

2 and 3, only oxygen was left on in fabricating wafer #3.

Steps 1, 4, 5 and 6 are the same as wafer #1. The schedule is

like this:

1. During final oxidation 7 minutes of oxide was grown using steam

and oxygen.

2. The steam was then turned off and the wafer was left in the

furnace for 5 minutes with dry oxygen on.

3. Wafer was then pulled out slowly with dry oxygen on.

4. Pre-ohmic holes were cut in oxide.

5. Wafer was aluminized and etched.

6. Wafer was sintered for 4 minutes at 4800 C.
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B. Results

The average short circuit current over the twelve cells is 1.66 ma

with a spread of 1.2-2.0 ma. The average is significantly less than wafer #1

but the spread is much larger than wafer #1. Thus, there is a difference in

I between wafer #1 and wafer #3 which indicates that whether steam is
sc

present or not, as the wafer cools, does affect the surface states and thereby

the magnitude of the inversion region.

Another variation in processing was tried in fabricating wafer #4.

The procedure is essentially the same as wafer #3 but nitrogen was used in

Step 2 and 3 instead of oxygen. Steps 1, 4, 5 and 6 are the same as wafer

#1 and #3. The average Isc for this group of cells was 1.78 ma with a spread

of 1.4-2.0 ma.

A summary of the results of this experiment is found below.

Average Isc Spread

Both steam and 0 left on 2.08 ma 1.9-2.1 ma
2

Aluminum sintered before etch 1.58 ma 1.5-1.7 ma

Only 02 left on 1.66 ma 1.2-2.0 ma

Only N2 left on 1.78 ma 1.4-2.0 ma

The results of this experiment show a change in inversion layer

is possible with a change in processing. This can be attributed to surface

state phenomena since the other source of induction, contamination, should

be a minimum.

Another wafer was processed to investigate surface state creation

of inversion layers. The following procedure was used to process the wafer:

1. Normal process through diffusion step.
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2. All oxide was stripped from wafer.

0

3. 4500 A of steam oxide was grown.

4. Wafer was slowly pulled from furnace with steam on.

5. Pre-ohmic holes were cut.

6. Wafer was aluminized and sintered for 4 minutes at 4800C.

All sixteen cells on the wafer responded to illumination from the

FBE incandescent lamp. Short circuit current ranging from 1.6 to 2.8 ma

were measured. The average over the wafer was 2.14 ma. The individual currents

were (all in ma):

2.1, 1.9, 1.6, 1.9, 2.0, 2.1, 2.1, 2.0, 2.1, 2.1, 2.1,

2.0, 2.8, 2.6, 2.5, 2.3.

The response of the last four cells is higher than the average and they were

all located along one edge of the cell, showing that a high response can be

achieved by proper treatment of the silicon surface during fabrication.
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V. THEORETICAL ANALYSIS

The approach to the determination of the currents and voltages

expected with this cell is similar to the approach taken to analyze the

conventional diode with a graded junction. The equation

S= + j qD n + qn E - qD + qpE
n P qDn x + qnnE - qDp x p

is used to obtain the current density. As a first approximation, the E

field is neglected and the diffusion terms retained. Since the p side is

similar to a conventional diode, it will be handled similarly.

The n side, however, is due to the distribution of inversion layer

electrons and involves equations derived from consideration of phonomena at

the surface.

If we combine Poisson's equation

a2  = _p(x)

x2  es

with the charge density inside the semiconductor

p(x) = q(N D - NA + p - n )

and considering

P - n = P e - n e
p p po po

then

2n 1/2
S 2 (e- " + + - 1) + P (eB _ " -1)

ax 6LD Pp0
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where

kT

when we are interested in the strong inversion region where B6 >> 1 or

e >> >> 1

The above equation reduces to:

_= 2 po  eB /2
x BLD po

Integrating over the limits from the surface where the surface band bending

potential is #s at x = o to a point within the surface at x, we get:

x = LD 22o e-P/2 - ePs/2

but

n(x) = n e

and finally

n
n(x) = po

L rD Ppo -/2

In order, though, to obtain a reasonable result for the current

flowing across the depletion region, the gradients of electrons and holes

at the depletion region have to be known. Mathematical expressions exist

that can give these relationships but boundary conditions must be determined

from judgments made about the onset of strong inversion and weak inversion.

Strong inversion occurs at the points where the Fermi level, with respect

to the mid-band energy, is equal but opposite to the Fermi level in the
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bulk. This can be illustrated in Fig. 26. This figure represents the

forbidden band of a semiconductor with the bottom of the conduction band

on top and the top of the valence band on the bottom. Ei is in the middle

of the forbidden band. EF is the Fermi level. An indicator of whether a

semiconductor is n or p type is whether the Fermi level is above (n) or

below (p) E.. A measure of the magnitude of n or p is the position of the
1

Fermi level with respect to either the valence band for p type or the con-

duction band for n type. The closer to either band the more heavy is the

carrier concentration. Thus, when the bands bend and Ei crosses over the

EF, a semiconductor near the surface can change from p to n as shown. Thus,

a p-n junction is formed at the surface.

The shape of the band as it bends toward the surface can be obtained

from a theoretical analysis of the inversion process. A plot of t vs. x is

shown in Fig. 27. This is the shape of the bands near the surface. Of

course, the shape depends on the magnitude of the final deviation at the

surface is. Figure 27 is the plot for a is of .65 volts, Fig. 28 for a s

of .70 volts and Fig. 29 for a is of .75 volts. These surface potentials

correspond to a surface concentration of electrons of 1016, 5x1016 and 1017

respectively, assuming room temperature and wafers of 10 ohm-cm p type. The

equation integrated to obtain these three plots is:

en )]1/2
8_ _ 2 e + 6p - 1 + -o (e8' - - 1)
ax BLD Ppo

(See Physics of Semiconductor Devices, Sze, Wiley, p. 431.)

where

kT
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LD = diffusion length

n = electron concentration in the bulk
po

ppo = hole concentration in the bulk

The onset of strong inversion is at the point where p = .6. From

the plot for is = .75 this corresponds to a point .06 pmeters into the

silicon surface and for .65 volts ps about .03 pmeters.

The onset of inversion occurs where * = * = .3 volts. For Ps = .65

inversion starts at 3 pmeters and when is = .75 inversion starts about the

same. Thus, the boundary points can be determined from these plots.

The surface potential ts was obtained by applying an external poten-

tial to the transparent electrode. A plot of the external bias to the

transparent electrode vs. the is it creates is found in Fig. 30. The equation

used for this plot is:

qD

Vapplied =s 
+  ud + w

where

1/2

w p po 1 _CIp

and

po +s/2 eBs/2

LD po

d is the inversion thickness

n. is the intrinsic concentration
1
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Figure 31 is an approximate plot of electron concentration vs.

depth into the wafer for two values of surface potential .65 and .75 volts.

The two vertical lines represent the value at strong inversion. The left

one for the lower .65 volt curve and the right one for the .75 volt curve.

The equation used to obtain this plot is: (when B >> 1)

n '
_ = 2 o e
ax BL p

D  po

and n = n e
po

Simple theory indicates that conductance, G, between the two stripes

of the small cell should be a linear function of the bias applied to the

transparent electrode of the transparent electrode solar cell. The

equation describing this relationship is:

G=
ks

where P carrier mobility

w width of cell

E permittivity of dielectric Si02

V applied bias to transparent electrode

k length of cell

s thickness of dielectric

Thus, if p, w, c, R and s are all constants, then G is directly proportional

to V and a plot of G vs. V should be a straight line with slope 
w
Zs

However, a plot of G vs. V for a small cell is not a straight

line but bends over for large values of bias. This is illustrated in Fig. 32.

Since w, 2 and s are physical dimensions, they are not likely to change and
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changes in c will be negligible, so these influences will not cause the

change in slope. However, p does change as the concentration of electrons

changes in the inversion layer.

This change in mobility for a change in electron concentration is

well known and is explained in the book, "Semiconductors" by H. Wolf published

by Wiley. Page 402 in this book contains curves of eff vs. carrier concen-

tration for inversion layers.

To obtain a calculated curve of G vs. applied bias, a computer-

aided plot of veff vs. surface voltage (is) was made from the equations

found in Wolf:

Bs
eff B +  s

s a2
- 1 - e s efc (as)

PB s

1 F2kT 1/ 2

s s- B n-

Curves of Es vs. surface voltage (ps) were computed so a plot of Ieff vs.

is was possible and is found in Fig. 33. A plot of is vs. applied bias was

also available, so a plot of veff vs. applied bias is possible. Since p is

directly proportional to G, a plot of p vs. applied bias could be applied

to the experimental curve of G vs. applied bias.

This experimental curve, however, does not meet the origin at 0

bias because of other sources of charge creating the inversion layer beside

the applied bias. To bring the two curves together they were both normalized

at 100 volts bias and the experimental curve shifted by 17 volts. Fig. 34

shows the results of this comparison. The dotted line is the computer-aided
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calculation and the solid line is the experimental curve taken from Fig. 32

A fairly good match is noted. The deviation comes at large values of

bias.

Thus the departure from the linearity of G as the inversion layer

grows is undoubtedly mainly due to the change of mobility of the electrons

as the layer grows. The response of the solar cell is therefore affected

by this change in mobility and we should see a "flattening" of the curve

for large biases as we do. There are other factors besides the mobility

change that flattens the response curve so an exact correlation between the

two is not possible.

It has been shown, however, that the change in mobility of the

electrons at the surface has a gross effect on the conductivity of the inver-

sion layer and, therefore, a gross effect on the response of the solar cell

to illumination.
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VI. MEASURING APPARATUS

To enable accurate measurements of current to be made, a tempera-

ture controlled cell holder was constructed. The holder was made from a

block of aluminum machined to form chambers under the top surface to allow

water to circulate in the block. The water is pumped from the tank of a

constant temperature bath to the water cooled block. Provision is made for

the insertion of the standard solar cell in the circulating path. A thermo-

couple well was made so a thermocouple could be inserted in the block close

to the surface near the cell position. The temperature will be measured

by this thermocouple and regulated by adjusting the temperature of the bath

water.

Three probes are mounted near the block so an electrical connection

can be made to the cell under test. The platform, containing the block and

probes, is mounted on an adjustable swivel to allow the cell to be oriented

normal to the sun rays. The entire apparatus including the constant tempera-

ture bath can be used on a movable cart for easy transportation in and out

of the building for a choice of illumination from an inside tungsten source

or the outside sun source. The inside tungsten source is a FBE daylight

flood light (650W).

Four conventional solar cells were calibrated against the standard

cell supplied by JPL. These four cells will be used as substandards to

calibrate the inside light source and to determine the sun's intensity when

measuring outside.

The standard cell was set in place in the measuring apparatus and

one of the substandards set on the aluminum block as mentioned above. The

circulating water bath temperature was adjusted to 280C and a measurement
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made on the short circuit current of the standard cell. A value of 40.81

ma was obtained. At 280C and 140 mw/cm 2 the standard cell will supply a

short circuit current of 47.88 ma. Therefore, the sun's intensity at the

time of measurement was 119 mw/cm 2 . The substandard cells produced short

circuit currents of 122.4 ma, 125.5 ma, 122.4 ma and 123.4 ma all at 280C.

The calibration current of these four substandards with respect to an

illumination of 140 mw/cm 2 is 143.6 ma, 147.2 ma, 143.6 ma, and 144.8 ma.

The substandards were 2x2 cm cells whereas the standard cell was 1x2 cm.
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VII. SPECTRAL RESPONSE

Spectral response information on the inversion layer cell is of

interest because of the possibility of this cell generating more power in

the shorter wavelengths of the sun's spectrum than the conventional p-n

solar cell. This possibility arises from the characteristic shallow junc-

tion of the inversion layer and the presence of an electric field at the

cell surface.

Both of these conditions tend to separate hole-electron pairs

created at the silicon surface. To illustrate this, an experiment was

performed to obtain a comparison of the response of the transparent elec-

trode cell to the sun with respect to an FBE photoflood lamp. The results

show a short circuit current increase of about 10% when illuminated.by the

sun with respect to the photoflood illumination. This result is shown in

Fig. 35.

The two curves in Fig. 35were plotted from data obtained by

illuminating the cell with 120 mw/cm2 , which is the sun's intensity at noon

in Tucson. The 120 mw/cm2 figure was obtained by exposing a conventional

cell (calibrated at 133 ma short circuit current for 140 mw/cm
2 illumination)

to the sun and getting a short circuit current measurement of 110 ma. This

corresponds to an illumination of

110 2
i30 x 140 = 120 mw/cm.
133

The curve labelled "sun illumination" is the curve obtained in the

sun as a function of the bias on the transparent electrode.

The intensity of the photoflood light source was set to illuminate

the conventional cell so an I output of 110 ma was obtained. Data on the
sc
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transparent electrode were then obtained at this illumination and is

plotted as the lower curve labelled photoflood illumination 
in Fig. 35.

Thus, the transparent electrode is more sensitive to the radia-

tion from the sun than with radiation from an incandescent source when the

two sources are adjusted for equal response to a conventional solar cell.

This phenomena can be explained by considering the difference in

spectral distribution between the sun and the photoflood lamp. 
If the

conventional cell is not as sensitive as the inversion layer cell to a part

of the spectrum, the shorter wavelengths for instance, but both are equally

sensitive to the rest of the spectrum and the two cells are exposed to two

different light sources, one containing the short wavelengths and the other

deficient in short wavelengths, then the inversion layer cell will show a

greater output for the spectrum with the short wavelengths. The reason

for this stems from using the conventional cell as a calibrator. The same

short circuit current is demanded of both light sources so the illumination

in the spectrum that both cells are sensitive to is the same in both but

added to this is the part of the spectrum in the short wavelength source

that only the inversion layer cell can convert to external current. For

the tungsten light source no extra radiation exists that the inversion

layer cell is sensitive to that conventional cell is not.

It is interesting to notice that as the inversion layer grows,

so does the difference between the response to the two light sources, and

where there is no inversion layer (at negative biases) there is no differ-

ence between the two sources of illumination. This supports the conjecture

that the high field at the surface of the silicon aids the collection of

the hole-electron pairs created at the surface by the short wavelength part

of the spectrum.
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Another evidence that supports the claim that the inversion layer

solar cell is more sensitive to the shorter wavelength of the sun's spec-

trum than the conventional solar cell comes from measurements of cell

output made by interposing optical transmission filters between the light

source and the cell.

A series of six broadband interference filters was purchased from

Baird Atomic Inc. and used to obtain data on the spectral response of the

transparent electrode solar cell and the contaminated oxide cell. The five

filters have peak wavelengths of 400, 450, 500, 550, 600 and 650 nanometers.

The spread at 50% of peak is around 250 nanometers for each filter. Trans-

mission averages 50%.

Light from the sun was used to determine the response of the cells

to various parts of the spectrum. Measurements were made on clear days

near noon to keep atmospheric absorption to a minimum. The apparatus hold-

ing the cell was tilted toward the sun to obtain maximum exposure to the

radiation.

A nearly light tight shield was placed around the cell to avoid

extraneous light from creating a large background. The radiation impinged

on the cell through a hole in the top of the shield. The filters were

placed over the hole to obtain the response of the cell to various slices

of the spectrum of the light source. An opaque medium was placed over the

filter, when in place, to obtain the background response.

Curves of short circuit current vs. wavelength were made for each

of the three cells. The curve for the conventional cell is found in Fig. 36.

The current measurements in the sun are adjusted to yield values as if 140

mw/cm2 total radiation was hitting the solar cell. The sharp decrease for
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the shorter wavelengths reflects a decrease in the response of the 
cell

plus a decrease in the output of the two sources.

The data was adjusted for each filter according to the amount of

radiation allowed through the filter. The factor for each filter was

obtained by considering the bandwidth at 50% of peak and the peak trans-

mittance. The reciprocal of the product of these two parameters was used

to obtain a weighting factor so somewhat of a comparison could be made

between points on the curve.

Figure 37 shows the effect of the sun's radiation on the short

circuit current of a contaminated oxide cell. The expected fall off is

seen and the difference between the natural and the artificial source is

also noted.

Figure 38 shows the curves for a transparent electrode cell for

two values of electrode bias. A bias of -20 volts will completely negates

any inversion layer and a bias of +50 volts will saturate the inversion

layer at these light levels. Therefore, we can observe the effect of the

bias on the response at different wavelengths.

The enhancement of the cell as the bias is increased can be

measured by comparing the sensitivity at +50 volts to that at -20 volts.

This ratio is about 3 for the sun's radiation.

The comparison between these curves as they are displayed on the

same axis, as shown in Fig. 39. The data from the conventional cell was

multiplied by a factor to make the conventional cell and the transparent

electrode cell match at a wavelength of 650 nonometers. The contaminated

oxide.cell was plotted with no alteration of the data.
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The response of the transparent electrode cell and the contaminated

oxide cell to the wavelengths of 400 and 450 nanometers upon exposure 
to

the sun is the same. This we would expect because both are inversion layer

devices. There is a difference between the two cells for the other wave-

lengths but since the oxide thickness is different between 
them the reflec-

tion and interference of light will be different also and thus the shape of

the curves will not necessarily be the same.

There is a decided difference, though, between the inversion layer

cells and the conventional cell. The ratios between values of I for the
sc

transparent electrode cell and the conventional cell for various wavelengths

are found in the following table:

Wavelengths
(nanometers) Ratio

400 4.40

450 1.60

500 1.20

550 1.25

600 1.10

650 1.00

This data establishes that the inversion cell is definitely more

sensitive to the shorter wavelengths than a conventional cell. If the

shorter wavelengths of 300 and 350 nanometers were explored even greater

ratios would be expected.
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VIII. TITANIUM-SILVER CONTACTS

An attempt was made to fabricate cells with titanium-silver contacts.

These contacts are reported to make a better ohmic contact than aluminum

("Electrochemically Passivated Contacts for Silicon Solar 
Cells," H. Fischer

and R. Gereth, IEEE Trans. Elec. Dev., Vol. ED-18, No. 8, Aug. 1971, pp. 459).

The low curve factor of the inversion layer cell with aluminum contacts is

partially due to the high resistance of the contacts. Therefore, the success-

ful deposition of Ti-Ag is important to produce a more efficient cell.

The titanium-silver was evaporated in a vacuum station with separate

sources. A shutter protected the wafer from the initial evaporants and was

opened after the titanium was brought to evaporation temperature. After

about 600 A of titanium was deposited, the silver was heated to evaporation

temperature and blended in with the titanium as the titanium evaporation 
was

shut down. The silver evaporation continued until the desired coating was

obtained.

The evaporation of the metals was successfully accomplished but the

metal layers lifted from the wafer during the photo-etch processing. Many

attempts to eliminate the problem of peeling were tried but each was unsuccess-

ful. The peeling only occurred on the polished surface leaving the bottom

surface with a good adherent-ohmic contact. An experiment was performed on a

blank wafer whereby a disk of Ti-Ag equal in area to the finger pattern was

evaporated through a mask on the polished surface and the normal evaporation

on the bottom surface. The wafer was sintered at 600
0 C for three minutes

after removing it from the vacuum station. No wet chemicals touched the

surface as would occur during the photo-etch process. The contact was very

adherent to the surface with no evidence of peeling and was impervious to



46

solvent and water washes. The resistance from front to back on the contact

areas was .94 ohms. A calculation of the resistance, assuming a 10 ohm-cm

wafer, indicates the resistance should be about .91 ohms. Thus, it can be

assumed that a good ohmic contact is formed using the sintered 
titanium-silver

deposition.

Another evidence that a good contact can be obtained with the Ti-Ag

contacts, if no wet process is involved before sintering, is the 
successful

fabrication of a conventional p-n junction solar cell with a curve 
factor

equal to the curve factor of a conventional manufactured cell. 
The finger

contact was evaporated through a mask. This indicates a good low resistance

contact. Comparative curves of a manufactured cell and a conventional cell

fabricated in the lab is found in Fig. 40. No antireflection SiO coating

was used on the latter cell.

Because of the difficulty of processing inversion layer cells with

titanium-silver contacts, cells with this contact were not fabricated.
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IX. CONCLUSIONS

It has been experimentally shown that an induced p-n junction can

act as a collector of free charges in a semiconductor that have been 
created

by photons. Thus, a photovoltaic cell can be produced by creating 
an inver-

sion layer near the surface of a semiconductor and applying suitable contacts

to carry the electrical power to an external load. It has also been demon-

strated that.these.cells are sensitive to the short wavelengths of the sun's

spectrum.

Several ways of inducing this junction have been illustrated such

as use of a transparent conducting coating separated from the semiconductor

by an insulator, an oxide on the surface of the semiconductor containing ions

from contaminants purposely placed there and providing surface states that

act as equivalent donors to the surface of the semiconductor.
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X. RECOMMENDATIONS OF FUTURE INVESTIGATION

1. That this cell be fabricated with Ti-Ag contacts with the 
aid of

the expertise and experience of a solar cell manufacturer.

2. That further optimization of the grid structure be performed 
to

increase the efficiency and curve factor of the cell.

3. That the contaminated oxide cell be explored further with respect

to different contaminants and other insulating layers.

4. That the transparent electrode cell be explored further 
to increase

the efficiency.
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S. Typical I-V Curve

for Photovoltaic Cell

n over p 2 ohm-cm

140mw/cm2 illumination

7 .. 2 x 2cm

current
(ma.x20)
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Figure 1
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Figure 2.

Standard Solar Cell Construction
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Figure 3
Inversion Layer Solar Cell
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Transparent Electrode Metallic Contact
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Figure 6

Transparent Electrode Cell
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Figure 8 Optical Transmission Characteristics of a Typical
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Metal Transparent Electrode
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Figure 10

Cross-section of New Cell Configuration
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Figure 12

Circuit Used for Conductance Measurements
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'Figure 13

Transparent electrode bias
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Figure 14
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I vs. Distance of knife edge over subcell with one contact
sc

to test circuit.

Subcell (4.2) Wafer #2 Series #6
Source: Sylvania FBE (140 mw/cm2
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Fig-re 15.
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I vs. Distance of knife edge ovet subcell with boti
sc

contacts connected to test circuit.

Subcell (4.2) Wafer #1 Series #6

Source: Sylvania FBE (140 mw/ m 2 )
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I vs. Distance of knife edge over subcell with one,
SC

contact connected to test circuit
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I vs. Distance of knife edge over subcell with one
sc

contact connected to test circuit

Subcell (4.2) Wafer #1 Series #6
Source: Ultraviolet
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Bias OV -80V
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6c - -- ---

' 2 0 V
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.... Distance of knife edge!over subcell in itches

Figure 18,. .! . 'I;; I i J
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Cell: Series #6, Subcell (4.2) Wafer #2

Test: I-V curves for biases of 80,' 40, 0, -20 volts

Source: Sylvania FBE (140 mw/cm 2 )
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Figure 19 i
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Figure 20 Schematic of Gas and Steam Supply and Vent System
Used to Grow Contaminated Oxides
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Figure 21 Plot of ISC vs. Contaminated Oxide ThicknessSC



70

2.5

Initial Processing

2.0

Ist Etch

1.5- 2nd Etch

3rd Etch

4th Etch
1. ~~Sth Etch

6th Etch

0.5

1000 2000 3000 4000 5000 6000 7000

Contaminated Oxide Thickness, Angstroms

Figure 22 Plot of I vs. Contaniinated Oxide Thickness
SAfter Incremental Etchin

After Incremental Etching a Cell from Curve #i
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Figure .23 Plot of IS vs. Contaminated Oxide Thickness After
Incremental Etching a Cell From Curve #2
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Figure 24 Plots of ISC vs. Distance of Knife Edge over Cell
with One Contact Connected to Test Circuit for
Various Oxide Thicknesses
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3600 A Curve

D1250 A Curve

900 A Curve

700 A Curve
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Distance of Knife Edge over Cell, Inches

Figure 25 Plots of I vs Distanice of Knife Edge over Cell
with Both ntacts Connected to Test Circuit for

Various Oxide Thicknesses
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Figure 26

Band Structure of Semiconductor Surface
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Conventional cell output vs. wavelength 1

of filtered light. !Response for

artificial light (FE Lam) and raw'

sunlight are shown.
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Contaminated oxide cell vs. waveldngth

of filtered light. !Response for

artificial light (FtE Lam p) and raw

sunlight are shown.
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Transparent electrode cell vs.

I wavlength of filtered lightJ.
Response for artificial light

(FBE Lamp) and iaw sunlight
are :shown.
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Comparison of Isc vs. wavelength curves for

the three different Isolar cells upon

exposure to the sun and to an arttificial.

tungsten light (FBE).
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APPENDIX I

STANDARD PROCESSING SCHEDULE FOR

TRANSPARENT ELECTRODE CELLS

1. Clean wafer with chromic and nitric acids, organic solvents and short

HF dips.

2. Grow 6000 A of steam oxide.

3. Using photoresist techniques, etch oxide for diffusion.

4. Phosphorus predeposition at 1050
0C.

5. Strip all oxide.

6. Drive in n type dopant (phosphorus) and grow silicon oxide to desired

thickness at 1100 0 C.

7. Deposit transparent oxide (SnO2 ) in special furnace apparatus.

8. Photoresist and etch SnO2 to Si0 2 surface.

9. Photoresist and etch SiO2 to Si surface.

10. Evaporate metal on wafer. (Aluminize)

11. Photoresist and etch metal.

12. Sinter.

13. Test.
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